منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe inverse moment problem for convex polytopes
We present a general and novel approach for the reconstruction of any convex d-dimensional polytope P , assuming knowledge of finitely many of its integral moments. In particular, we show that the vertices of an N-vertex convex polytope in R can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to an unknown polynomial measure of degree D), in d + 1 distinct directions in gener...
متن کاملNakajima’s Problem for General Convex Bodies
For a convex body K ⊂ Rn, the kth projection function of K assigns to any k-dimensional linear subspace of Rn the k-volume of the orthogonal projection of K to that subspace. Let K and K0 be convex bodies in Rn, let K0 be centrally symmetric and satisfy a weak regularity assumption. Let i, j ∈ N be such that 1 ≤ i < j ≤ n − 2 with (i, j) 6= (1, n−2). Assume that K and K0 have proportional ith p...
متن کاملThe use of inverse quadratic radial basis functions for the solution of an inverse heat problem
In this paper, a numerical procedure for an inverse problem of simultaneously determining an unknown coefficient in a semilinear parabolic equation subject to the specification of the solution at an internal point along with the usual initial boundary conditions is considered. The method consists of expanding the required approximate solution as the elements of the inverse quadrati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1976
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.73.5.1377